On classifying Laguerre polynomials which have Galois group the alternating group

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On classifying Laguerre polynomials which have Galois group the alternating group par

We show that the discriminant of the generalized Laguerre polynomial L n (x) is a non-zero square for some integer pair (n, α), with n ≥ 1, if and only if (n, α) belongs to one of 30 explicitly given infinite sets of pairs or to an additional finite set of pairs. As a consequence, we obtain new information on when the Galois group of L n (x) over Q is the alternating group An. For example, we e...

متن کامل

On the Galois Group of generalized Laguerre polynomials

Using the theory of Newton Polygons, we formulate a simple criterion for the Galois group of a polynomial to be “large.” For a fixed α ∈ Q−Z<0, Filaseta and Lam have shown that the nth degree Generalized Laguerre Polynomial L (α) n (x) = ∑n j=0 ( n+α n−j ) (−x)/j! is irreducible for all large enough n. We use our criterion to show that, under these conditions, the Galois group of L (α) n (x) is...

متن کامل

LAGUERRE POLYNOMIALS WITH GALOIS GROUP Am FOR EACH

In 1892, D. Hilbert began what is now called Inverse Galois Theory by showing that for each positive integer m, there exists a polynomial of degree m with rational coefficients and associated Galois group Sm, the symmetric group on m letters, and there exists a polynomial of degree m with rational coefficients and associated Galois group Am, the alternating group on m letters. In the late 1920’...

متن کامل

Galois Group Computation for Rational Polynomials

We describe methods for the computation of Galois groups of univariate polynomials over the rationals which we have implemented up to degree 15. These methods are based on Stauduhar's algorithm. All computations are done in unramiied p-adic extensions. For imprimitive groups we give an improvement using subbelds. In the primitive case we use known subgroups of the Galois group together with a c...

متن کامل

Multi-parameter Polynomials with Given Galois Group

The non-Abelian finite simple groups and their automorphism groups play a crucial role in an inductive approach to the inverse problem of Galois theory. The rigidity method (see, for example, Malle and Matzat, 1999) has proved very efficient for deducing the existence of Galois extensions with such groups, as well as for the construction of polynomials generating such extensions. Nevertheless, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux

سال: 2013

ISSN: 1246-7405,2118-8572

DOI: 10.5802/jtnb.822